河北建筑工程学院

二〇一五年硕士研究生入学考试试题 试卷_A_

考试科目代码 803 考试科目名称 传热学

所有答案必须写在答题纸上,做在试卷或草稿纸上无效。								
— .	填空题(每题4分,共5题,共计20分)							
1.	内壁黑度为 ε ,温度为 T ,直径为 D 的空腔黑体,球壁上有	·						
直径为 $d^{(d \ll D)}$ 的小孔,该空腔通过小孔向外辐射的能量为								
()。							
2.	假设粗糙红砖、空气、表面氧化的铜管、磨光的铝表面的	发						
射率分别为 ϵ_1 , ϵ_2 , ϵ_3 , ϵ_4 , 则各表面发射率由大到小排序为								
() 。							
3.	通过长圆筒壁导热时,圆筒壁内的温度呈()						
分布规律。								
4.	速度边界层是 ())						
5.	管内对流传热的入口效应是指(0						
<u> </u>	名词解释(每题6分,共5题,共计30分)							
•								
6.	角系数							
0.	/II /N /A							
7.	黑体							

- 8. 热辐射
- 9. 热对流
- 10 肋片效率

三. 简答题(每题10分,共4题,共计40分)

- 11. 简述换热器的顺流布置方式的特点, 优势和不足。
- 12. 应用边界层理论来分析流体的导温系数、导热系数对对流换热表面传热系数的影响。
- 13. 空气沿竖板加热自然对流换热时, 其边界层内的速度分布与空气沿竖板受迫对流换热时有什么不同? 为什么?
- 14. 某楼房室内是用白灰粉刷的,但即使在晴朗的白天,远眺该楼房的窗口时,总觉得里面黑洞洞的,这是为什么?

四. 计算题(每题20分,共3题,共计60分)

15. 球壁的内外半径为 r_1 和 r_2 ,球壁的内外表面分别保持恒定的温度 t_1 和 t_2 。球壁的导热系数 λ 为常数。推导空心球壁的温度分布和导热量。

16. 100℃的热水,流经内径为 16mm、壁厚为 1mm 的管子,出口温度为 80℃;与管外冷水的总换热量为 350kW,试计算管内平均对流换热表面传热系数。

定性温度选进出口水温的算术平均值。

准则方程:

$$N_u = 0.023 R_e^{0.8} \cdot P_r^{0.3}$$
.....(旺盛湍流 $R_e > 10^4$)

$$N_u = 1.86(R_e \cdot P_r \cdot d/L)^{1/3} (\frac{\eta_f}{\eta_w})^{0.14} \dots (E le R_e \langle 2300 \rangle$$

水的物性简表:

t_f / c	$\frac{c_p}{kJ/(kg\cdot K)}$	$\frac{\rho}{kg/m^3}$	$\frac{\lambda \times 10^2}{W/(m \cdot K)}$	$\frac{\eta \times 10^6}{kg/(m \cdot s)}$	$\frac{\upsilon \times 10^6}{m^2/s}$	P_r
20	4. 183	998. 2	59.9	1004	1.006	7.02
80	4. 195	971.8	67.4	355.1	0.365	2.21
90	4.208	965.3	68.0	314.9	0.326	1.95
100	4. 220	958.4	68.3	282.5	0. 295	1.75

17. 面积为 3m×3m 的方形房间,地板(表面 2)的温度为 25℃, 天花板(表面 1)的温度为 13℃,四面墙壁部(表面 3)是绝热的。房间高 2.5m,所有表面的发射率为 0.8。已知表面 1 对表面 2 的角系数为 0.25。

试求:

- (1) 地板与天花板之间的辐射换热量;
- (2) 墙壁的温度。